If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20=32x
We move all terms to the left:
4x^2-20-(32x)=0
a = 4; b = -32; c = -20;
Δ = b2-4ac
Δ = -322-4·4·(-20)
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{21}}{2*4}=\frac{32-8\sqrt{21}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{21}}{2*4}=\frac{32+8\sqrt{21}}{8} $
| 5/3x+6/x-2=35/3x | | 1/2=3x+5x-8 | | -3(6-2x)=36 | | 21-3(9-2x)=3(x-1) | | -234=-9(10+w) | | 7x-2+3x=18 | | -7=4y+8 | | 16x-4=15x+6-x | | 3(-3z)+5(2z-10)=0 | | 2t^2+8t-1=0 | | 1.7x-1.4-3.5x=-0.8x-1.4 | | 2w^2+8w-1=0 | | 7(1-7n)-4=101 | | 5.8s-2=4.8s-2 | | 4(25-c)=153 | | (4x-7)^2=-20 | | -6(4y+3)+18=-48 | | 2(x-5)+3x+5=35 | | 6y-7=13y+28 | | d=100300+0.550.753002 | | -x²+10x-21=0 | | r+15=4r=6 | | 3(3x-1)+3=18 | | 1=q4-2 | | .5(x+2)+.75(x+12)=x+11 | | 3x-1=-12+1 | | 6x-5x+7x=20 | | x^{4}+8x^{2}+12=0 | | 3.4x-1=5.9x+4 | | 36p+18=35 | | x+3/7=11 | | -7.2=-4.5x |